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Abstract  

An electrically conducting viscous incompressible Bingham fluid bounded by two parallel 

non-conducting plates has been investigated in the presence of Hall current. The fluid motion is 

uniform at the upper plate and the uniform magnetic field is applied perpendicular to the plate. The 

lower plate is fixed while upper plate moves with a constant velocity. The governing equations have 

been non-dimensionalzed by using usual transformations. The obtained governing non-linear 

coupled partial differential equations have been solved by using explicit finite difference technique. 

The numerical solutions are obtained for momentum and energy equations. The influence of various 

interesting parameters on the flow has been analyzed and discussed through graph in details. The 

values of Local Nusselt number, Average Nusselt number, local Skin- Friction, Average Skin- 

Friction for different physical parameters are also illustrated in the form of graph. 
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Nomenclature 

,u w   Velocity components 

1 2,T T   Temperature at lower and upper plates 
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oB   Uniform magnetic field 

,U W   Primary and secondary velocity 

  Dimensionless temperature 

D   Dimensionless Bingham number 

   Dimensionless time 

m   Hall parameter  

aH   Hartmann number 

rP   Prandtl  number 

cE   Eckert number 

 

1. Introduction 

     The study about magneto hydrodynamic (MHD) flow has received considerable attention to 

many researchers due to its many industrial applications such as the use of MHD pumps in 

chemical industry technology for filtration and purification process, the operations of MHD 

accelerators, aerodynamics heating, electrostatics precipitation, polymer technology, petroleum 

industry and fluid droplets sprays. The steady MHD flow between two infinite parallel stationary 

plates in the  presence  of  a  transverse  uniform  magnetic  field  was  first  studied  Attia (2007).  

Such type of flow can be used in Civil engineering point of view.  For bridge construction, the 

water flow between two piers can be measured and also the appropriate distance between the two 

piers can be measured.   

Last few decades, great emphasis had been laid on continuum mechanics with paying 

particular attention on polymer solutions and polymer melts. But many geological and industry 

materials such as mud, lava, painting oil, drilling mud, cement, sludge, grease, granular 

suspensions, chocolate and paper pulp, which are frequently used in  industrial  problems which 

includes viscoplastic materials such as Bingham plastic named  Bingham.  

It is of special class, for which the shear stress beyond the yield stress is linearly proportional to 

the shear rate. If the yield stress tends to zero, the Bingham plastic fluid can entirely be treated as 

Newtonian fluid. But viscoplastic Couette flow, more precisely Bingham-Couette flow under the 

action of magnetic field applied perpendicularly has application in MHD power generators, MHD 

pumps, accelerators, electrostatic precipitation. In the study of the channel flow of the Bingham 

fluid, Friggard (1994) mentioned that an infinitesimal perturbation to the flow should displace the 

yield surfaces but otherwise leave them intact, since the unyielded region is "an elastic solid that 
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would not break up". Attia (2004) studied the effects of Hall current on unsteady MHD Couette 

flow and heat transfer on Bingham fluid with suction and injection. Sahoo et al. (2010) studied the 

heat and mass transfer in MHD flow of a viscous fluid past a vertical plane under oscillatory suction 

velocity with heat source. Sahoo et al. (2011) investigated three dimensional MHD free convective 

flow with heat and mass transfer through a porous medium with periodic permeability. Also Sahoo 

et al.(2011) studied unsteady two dimensional MHD flow and heat transfer of an elastic-viscous 

liquid medium with source/sink. Panda et al.(2012) examined the heat and mass transfer on MHD 

flow through porous media over an accelerated surface in the presence of suction and blowing. In 

the following year Sahoo et al. (2013) showed the MHD fixed convection stagnation point flow and 

heat transfer in a porous medium. Naik et al. (2014) studied the effect of Hall current on unsteady 

MHD free connective Couette flow of Bingham fluid with thermal radiation. Crank Nicolson finite 

difference technique was used to obtain exact solution for velocity and temperature field with the 

effect of thermal radiation and Hall parameter.  

In this paper, our aim is to study the finite difference solution of unsteady MHD viscous 

incompressible Bingham fluid flow with hall current. The system is considered as such that the 

upper plate is moving with a uniform velocity while the lower plate is fixed. A constant pressure 

gradient act on the plastic flow and uniform magnetic field is applied perpendicular to the plates. 

Very small value of Magnetic Reynolds Number is assumed to neglect the strong effect of induced 

magnetic field. The governing momentum and energy equations are solved numerically using the 

explicit finite difference approximations. Eventually interesting effects on velocity and temperature 

distributions, Skin friction and Nusselt number at both plates for Bingham fluid is observed. Such 

type of model can be used for fluid flow between two piers. 

 

2. Mathematical formulation 

The physical configuration and 

the boundary condition of the 

problem is shown in Fig: 1. The 

fluid is assumed to be laminar, 

incompressible and obeying 

Bingham model and flows between 

two infinite horizontal plates. These 

plates are located at the y h   planes 

and extend from 0x  to  and 
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from 0z  to . The upper plate moves with a uniform velocity 0U while the lower plate is stationary. 

Both the upper and lower plates are kept at two constant temperatures are 2T and 1T respectively, 

with 2 1T T . A constant pressure gradient applied in the x -direction, and a uniform magnetic field 

0B is applied in the positive y -direction and is assumed undisturbed as the induced magnetic field is 

neglected by assuming a very small magnetic Reynolds number. Due to consideration of Hall 

Effect, a z component for the velocity is expected to arise. Thus the fluid velocity vector is 

ˆˆ ˆui j wk  q . By using generalized Ohm’s Law, the unsteady MHD Bingham fluid flows are 

governed by the following equations is given by; 

Continuity equation:      
u v

x y

 
  

 
                            (1)  

Momentum equation in x axis:   
2

2

1 1 1

1

oBu u u dp u
u v u mw

t x y dx y y m




  

      
        

             
 2  

Momentum equation in z axis:   
2

2

1 1

1

oBw w w w
u v w mu

t x y y y m




 

      
       

                   
 3  

Energy equation:  
2 2 22

2 2

2 2

1

1

o

p p p

BT T T k T u w
u v u w

t x y c c y y cy m



  

           
           

                 

 4
 

2 2

o

u w

y y


   

    
   

      

is the apparent viscosity of Bingham fluid 

with the corresponding boundary conditions are           

0t  ,   

1

1

2

,      at x

,      at 

,  at o

u w

u w y h

u U w y h

       

       

     

 

To obtain the governing equations and the boundary condition in dimensionless form the following 

non-dimensional quantities are used as;  

 1

2

2 1

, , , , , , , , , o

o o o o

tU T Tx y z u v w p
X Y Z U V W P

h h h U U U U h T T k


 




          


 

Using the above non-dimensional variables in equations (1- 4) and boundary conditions it can be 

written as (where hat is dropped) 

0
U V

X Y

 
 

 
  (5)  



42 

 

 
 

2

2

1

1

aHU U U dP U
U V U mW

X Y dX R Y Y m


 

      
        

        

 (6)  

 
 

2

2

1

1

aHW W W W
U V W mU

X Y R Y Y m


 

      
      

        

 (7)  

 
 

2 2 22
2 2

2 2

1

1

a c
c

r

H EU W
U V U W

X Y P Y Y Y m

   




         
          

           

 (8)  

2 2

D

U W

Y Y


 

    
   

    

 

And the dimensionless boundary conditions are; 

0  ,    

,  W     at X

,  W     at Y

,  W     at Y

U

U

U







       

       

      

 

3. Shear Stress and Nusselt Number   

     From the velocity field, the effects of various parameters on Shear Stress have been studied. 

Shear Stress in x direction for stationary wall is 
2 2

1

1

w

Y

U W

Y Y
 



     
     

     
 

and for moving wall is 

2 2

2

1

w

Y

U W

Y Y
 



     
     

     
 

.From the temperature field, the effects of various parameters on Nusselt 

number have been analyzed. Nusselt Number for stationary wall is 1
1

2
Y

u

m

T

Y
N

T



 
 

 



and for moving 

wall is
 

1
2

2

1

Y
u

m

T

Y
N

T



 
 

 

 

, where mT  is the dimensionless mean fluid temperature and is given by 

1 1

1 1

2mT U dY UdY
 

 
  
 
 

 

 

4. Numerical Solutions 

To solve the non-dimensional system by explicit finite difference method, a set of finite 

difference equations is required. For this reason the area within the boundary layer is divided into a 
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Fig: 2. Finite difference system grid 

grid or mesh of lines parallel to x and y axis. Where x axis is taken along the plate and y axis is normal 

to the plate as shown in Fig: 2. It is considered that the plate of height max ( 0)X   i.e. X varies from 1 

to 40 and regard max ( )Y   i.e. Y varies from 1 to 2. 

The number of grid spacing in both directions are 

40, 40m n  . Hence the constant mesh size 

along x and y directions are 1.0x   and 

0.05y   respectively with smaller time 

step 0.0001  . 

Let ,  and U W   denotes the value of ,  and U W   

and the end of the time-step respectively. Using 

explicit finite difference, the following 

appropriate set of finite difference equation are 

obtained as; 

, 1, , 1,
0

i j i j i j i jU U V V

x y

  
 

 
  9  

 

, , , 1, , 1 ,

, ,

2
, 1 , , 1 , , 1 , , 1

, , ,2 2

21
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i j i j

i j i j i j i j i j i j i j a
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U U U U U U
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

 
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 
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   
  

  
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 (10)
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With the finite difference boundary conditions 
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1, 0, 1   at 1
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   
 



44 

 

The numerical values of local shear stress, local Nusselt number are evaluated by Five point 

approximate formula and the average shear stress, average Nusselt number are calculated by 

Simpson’s 
1

3
 integration rule. The stability conditions of the method are; 

 

2

2
1

2 1

a
V HU

X Y R m

 



 
  

  
, 

 
2

2
1

r

VU

X Y P Y

  
  

    

and the convergence criteria of the 

problem are 10, 0.00251, 1, 0.08a rH R m P    with 0.1cE  .(details are not shown for brevity).  

 

5. Results and Discussion 

The obtained governing equations are non-linear, coupled partial differential equations which 

cannot be solved analytically. That’s why, explicit finite difference technique has been used to 

solve these equations. To obtain the numerical solutions, the computations have been carried out up 

to 0.1  to 20.00  . The results of computation show little changes for 0.1   to 4.50  ,but after 

that until 20.00  the results remain approximately same. In order to get the clear concept of 

physical properties of the problem, the effects of two parameters namely Hall parameter (m) , 

Hartmann number ( )aH  in the presence of Reynolds number (R )E , Prandtl number ( )rP  and Eckert 

number (E )c  are represented graphically through Figs: (3- 6). The effects of Hall current  m  on 

Shear Stress both at stationary and moving plate are presented in Fig.3(a-b). It is observed that 

Shear Stress at both plates increase with the increase of m .This is due to the fact an increase in m 

decreases effective conductivity 2( / (1 m ))  , hence magnetic dumping force on U . The effects of 

Hall parameter (m) on Nusselt number both at stationary and moving plate are elucidated in Fig. 

4(a-b). As U  and W increases with the increase of m , joule and viscous dissipations also increases 

for which temperature increases. But the reverse effects is observed for Nusselt number. The effects 

of Hartmann number  aH on shear stress for both plates are shown in Fig: 5(a-b). 
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   Fig: 4 Illustration of Nusselt Number at (a) Stationary wall (b) Moving wall for different  

          values of Hall Parameter 

 

 

Fig: 5 Illustration of Shear Stress at (a) Stationary wall (b) Moving wall for different values of  

Hartmann number  

 

Fig: 3 Illustration of Shear Stress at (a) Stationary wall (b) Moving wall for different values  

        of Hall Parameter 
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It is seen that with the increase of Hartmann number ( )aH  shear stress decreases, showing the effect 

of dragging the magnetic field as Hartmann number gives a measure of the relative importance of 

drag forces resulting from magnetic induction and viscous forces. The effects of Hartmann number 

on Nusselt number are shown in Fig: 6(a-c). It is observed that with increase of ( )aH  Nusselt number 

at both plates increases. Due to the incitement of convection by the magnetic field, results a gradual 

increase of Nusselt number. 

 

 

 

 

  Fig: 6 Illustration of Nusselt Number at (a) Stationary wall (b) Moving wall for different values  

 of Hartmann number 

  

Fig: 7 Illustration of Time Variation for (a) Primary Velocity (b) Secondary Velocity 

Fig: 8 Illustration of Time Variation for temperature 
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The profile of primary velocity, secondary velocity   and temperature for different times is shown in 

Fig: 7-8. It is seen from Fig: 7(a) that primary velocity does not reach its steady state 

monotonically. It increases with time up till a maximum value and then decrease up to steady state. 

But from Fig: 7(b) and Fig: 8 it is clear that both secondary velocity and temperature profiles reach 

their steady state monotonically. It also should be mentioned that primary velocity reaches the 

steady state faster than secondary velocity which, in turn, reaches steady state faster than 

temperature. 

 

Conclusion  

In this research, the explicit finite difference solution of unsteady MHD viscous incompressible 

Bingham fluid flow bounded by two electrically non-conducting plate in the presence of Hall 

current, Hartmann number, Reynolds number, Eckert number and Prandtl number has been 

investigated. For brevity, the effect of Eckert number and Prandtl number are not shown. The 

physical properties are illustrated graphically for different values of corresponding parameters. 

Among them some important findings of this investigation are mentioned here; 

1. The Shear stress at stationary wall and moving wall increases with the increase of m . 

2.  The Nusselt number at stationary wall and moving wall decreases with the increase of m . 

3. The Shear stress at stationary wall and moving wall decreases with the increase of aH . 

4. The Nusselt number at stationary wall and moving wall increases with the increase of aH . 

5. Primary velocity reaches steady state briskly in the comparison with secondary velocity 

and temperature. 
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